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Abstract-The paper reports on the computation of laminar and turbulent natural convection in rec- 
tangular enclosures with aspect ratios of 1 and 5 with simple- and mixed-boundary conditions in the range 
of Ro numbers from IO” to IO”. A form of the algebraic model for the turbulent heat flux vector Ou,. with 
the low Re number k& transport equations, found earlier to predict well some cases of external free 
convection, gave satisfactory results in all considered cavity tlows. Parallel computations with several 
variants of eddy diffusivity k---c model failed to produce a consistent quality of results, indicating a necessity 
to employ a higher order model which departs from the isotropic eddy diffusivity concept. It was found 
that the effects of both the mean temperature- and mean velocity-gradients on the dynamics of turbulent 

heat transport should be accounted for, particularly in cases with more complex boundary conditions. 

1. INTRODUCTION 

NATURAL convection in a two-dimensional cavity is 
one of many examples of turbulent Rows whose geo- 
metrical simplicity conceals the full complexity of the 
real flow pattern. In spite of a significant practical 
importance in many engineering and environmental 
applications and numerous research reports in litera- 
ture, the problem has not been fully understood as 
yet. There are still no reliable models or correlations 
which can be used with certainty for the prediction of 
heat transfer in cavities, in particular if the boundary 
conditions are non-standard. 

A common practice to establish experimentally 
the heat transfer correlation in form Nu = ,f(Ra, Pr, 
A,. . .) has so far not produced a consensus even 
for the simple ‘clean’ cases, such as cavities with side 
heating and cooling. This is best illustrated by the 
variety of relationships available in literature both 
for the laminar and turbulent convection (e.g. 
Gebhart et ul. [l]). For cavities with more complex 
boundary conditions every new situation requires a 
different relationship, as shown by Kirkpatrick and 
Bohn [2] and others. Hence. in spite of a dose of 
skepticism towards the numerical solutions, partly 
justified by still present uncertainties in both the 
numerical accuracy and in modeling turbulence under 
the dominance of buoyancy, it is likely that the 
numerical computations of field properties by a flex- 
ible code with an advanced turbulence model will be 
used more and more in the future to predict the natu- 
ral convection in unknown situations. 

A major feature of the natural convection in con- 
fined domains is a recirculating motion induced by 

buoyancy forces due to heat transfer on the enclosing 
non-adiabatic walls. As pointed out by Ostrach 131, 
two distinct flow patterns can be discerned : boundary 
layers forming along the enclosure walls and the 
encircled rotating core. The flow in the core region is 
influenced by the boundary conditions only indirectly 
through the interaction with the surrounding bound- 
ary layers and can take various patterns in the form 
of one or more rolls, depending on the wall conditions 
and the value of the Ru number. In case of higher RLI 

numbers, turbulence will be generated in the boundary 
layers and diffuse into the core, but the structure of 
turbulence and the mechanisms which govern the 
transport of heat and momentum in these two regions 
will have essentially different scales. Mutual inter- 
action between the wall boundary layers and the core 
region and consequent modifications of both patterns 
is the major reason for limited success in attempting to 
derive scaling laws applicable to cavities with different 
boundary conditions and aspect ratios. 

The mentioned features and others place a par- 
ticular demand on turbulence models for natural con- 
vection which are expected to depict ail important 
turbulent processes in wall boundary layers, cavity 
corners and in the core region. as well as the inter- 
actions at the zones interfaces. 

Two-dimensional cavities are not of a significant 

practical interest per sr, because ail geometries of prdc- 

ticdl relevance arc three-dimensional. They have been 
a subject of detailed investigation over the years 
mainly because of their geometrical simplicity and 
supposed convenience for experimental verification. 
They also serve as a basis for testing the ideas for 
devising and improving the turbulence models aimed 
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NOMENCLATURE 

A aspect ratio, H/W u, mean velocity 

4, buoyancy parameter, /jg,(k/~)~(i?T/~?.~,) I/, , Ii horizontal mean velocity 

C‘ empirical coefficients U2, V vertical mean velocity 
cv abbreviation for control volume W, turbulent stress tensor 

,Y< gravitational acceleration (0. -y, 0) Vh buoyant velocity, ,/(/!yATH) 
G buoyancy production of turbulence W enclosure width 

energy .Y, coordinate 
H cnclosurc height .Y , , x horizontal coordinate 
k turbulence kinetic energy .XZ.J vertical coordinate 
L enclosure length I’+ dimensionless coordinate normal to the 
Nzr local Nussclt number at the wall, wall, .Y,, C/,/v. 

-(H:‘AT)(iT/?_u,,) 

Nil averaged Nusselt number at the wall, 

i:, Nu d(r:H) Greek symbols 
P production of turbulence energy due to /j coefficient of thermal expansion 

mean rate of strain AT difference between hot- and cold-wall 
PI Prandtl number temperatures 
R ratio of mechanical-to-thermal time E rate of dissipation of turbulence energy 

scale of turbulence i: isotropic part of s 

Re, turbulence Reynolds number, k2/vs empirical coefficient 
RU Raylcigh number, /@/ATHi Pr/v’ ;3 temperature variance 

RU ,, Rayleigh number, &ATW’ PI./v’ thl, turbulent heat flux vector 
T lempcrature 1’ kinematic molecular viscosity 
T hull\ rcfcrence bulk temperature ‘1, kinematic turbulent viscosity 

T, temperature of the cold wall c” empirical coefficient 

r,, temperature of the hot wall L’ fluid density 
T* nondimensional temperature excess, z,, wall shear stress 

(T- T,)/AT 40 empirical coefficient 

4 fluctuating velocity Q, general symbol for dependent variable. 

at application to more general and practically relevant 
three-dimensional confined natural convection. In 
fact, experimental evidence indicates that effects of 
three-dimensionality arc often discernible even in 
strictly two-dimensional geometries and they are 
probably the major cause for a noticeable sensitivity 
of confined buoyancy driven flows to the enclosure 
configuration and frequently reported disagreement 
and non-repeatability of the measured results. 

All these factors. as well as the appearance of a well 
organized coherent structure discernible particularly 
in cases with heating from below, pose a serious chal- 

lengc to the modcling, and are reasons for an evident 
distrust in the numerical computations of natural con- 
vection in interiors. To this, one may add a strong 
coupling and mutual feed-back between the density 
(temperature. species concentration) and velocity 
fluctuating fields as well as a need to account for 
molecular effects. The latter are known to remain 
important in some areas of the flow (e.g. the initial 
regions of the boundary layers along the vertical 
walls) even through the bulk Ru number may far 
exceed the critical values for the appearance of tur- 
bulent regime. 

Accurate description of turbulent natural con- 
vection in an enclosure seems to require at least the 
second-moment closure level in order to ensure pre- 
dictions of non-standard behavior pertinent to the 
buoyancy driven flows. Such is, e.g. a turbulent trans- 
port of heat in regions where the mean temperature 
has close-to-uniform profile or gradient directed 
opposite to the turbulent flux vector (counter-gradient 
diffusion). Other requirements include the prediction 
of a switch from laminar-to-turbulent regime at the 
appropriate local Ru numbers (not necessarily the 
transition phenomenon itself, which, of course, is not 
tractable by the Reynolds averaging). This is impor- 
tant in some new applications such as crystal growth, 
cooling of the electronic circuits or of nuclear reactors. 
In the first case, the appearance of even small insta- 
bilities and any turbulence may be detrimental to the 
crystal quality. These and similar cases are sensitive 
tests for the low Re number modifications of the tur- 
bulence models. 

In comparison with the isothermal flows dominated 
by shear or pressure gradient, the application of 
second-moment closure methods for buoyancy driven 
tlows pose much more uncertainty because of a need 
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to model a number of unknown correlations repre- 
senting the interactions between the fluctuating vel- 
ocity and temperature field. Proposals for these cor- 
relations have been published in literature (e.g. Laun- 
der 141) but their verification has been so far limited 
only to some simple flows such as boundary layer at 
a heated vertical plate (e.g. Peelers and Henkes 151). 
For that reason, but also because of an increasing 
number of equations to be solved which, for complex 
three-dimensional geometries with irregular bound- 
aries, may pose a formidable problem, we have 
focused our attention on a simpler level of modeling 
which ultimately reduces to a form of an algebraic 
turbulent flux model. Turbulence scales have been 
obtained by the solution of the transport equations 

for li and E with low Rr number modifications. 
The work described here will be limited to two- 

dimensional cavities. The paper first discusses two 
cases of rectangular cavities, both with side heating 
and cooling and adiabatic top and bottom walls: a 
square cavity and a tall cavity with a 5 : 1 aspect ratio. 
The influence of mixed boundary conditions are dis- 
cussed in an example of a square cavity with one side 
wall and bottom wall heated and the other side wall 
and top wall cooled. All cases will be considered for 
the range of Ru numbers between 10” and IO”, i.e. 
around the laminar-to-turbulent transition. It is 
believed that this range of Ru number represents the 
most severe test for the turbulence modeling. Also, 
some computations have been performed with differ- 
ent Pr numbers. The accuracy of the applied numeri- 
cal code and grid refinement will be illustrated by 
several examples of the computation of laminar natu- 
ral convection in a square cavity for IO” < Ra < IO”. 

2. PREVIOUS WORK AND RELEVANT 

REFERENCES 

Over the past decade a number of reports appeared in 
the literature on the computations of turbdent natural 
convection in two-dimensional enclosures. Fraikin ef 

al. [6], Markatos and Pericleous [7], Ozoe et al. [8], 
Thompson rt al. [9], Fusegi and Farouk [IO] and 
Nobile et al. [I I] used the standard high Rr number 
k-8 model and employed wall functions for the treat- 
ment of wall boundary conditions. Several anomalies 
have been detected in the computed results dem- 
onstrating the inadequacy of the employed models. 
For example, Markatos and Pericleous (who, like 
some other earlier authors, omitted the buoyancy gen- 
eration terms in both the k- and E-equations) obtained 
the Nusselt numbers which are much larger than 
found by experiments. The computations of Ozoe rf 
ul. and of Fusegi and Farouk show unrealistic double 
peaks in the profile of the kinetic energy close to the 
wall. Thompson found that the eddy viscosity has 
a maximum value in the middle of the cavity and 
employed artificial damping functions to eliminate 
this erroneous behavior. Fraikin et a/. (who con- 

sidered the case with horizontal walls having a linear 

temperature distribution) and Nobile et al. considered 

only relatively small Ra numbers up to IO’“. 
Recognizing the fact that in buoyant flows along 

non-adiabatic vertical walls the buoyancy effects are 
significant very close to the wall where the flow is 
also affected by molecular transport, several authors 
computed the natural convection in enclosures by 
employing the low Re number variant of the k-~ 
model, e.g. Betts ef ul. [12], Ince and Launder 1133% 
Davidson [14], Giel and Schmidt [IS]. Hanjalik and 
Vasii: [ 161 and Henkes et ul. [ 171. The latter models 
seem to be generally more successful than the standard 
k-c version, though most authors reported a need to 
introduce additional modifications to the model in 
order to achieve acceptable agreement with exper- 
iments. Even the same model with slightly different 
damping functions can produce noticeable effects. A 
case in point is the low Rr number model of Jones 
and Launder [IS], which scrvcs as a basis of most 
computations, including the present ones. A variant 
of this model as proposed by Launder and Sharma 
[ 191, which differs from the original mainly in the form 
of the damping function ,f;, in the eddy diffusivity, 
produces the laminar-to-turbulent transition and the 
predictions of the field properties in the transition 
region notably closer to the experimental observations 
than the original model. An important effect upon the 
solution has also been the definition of the dependent 
variable in the dissipation equation (and its boundary 
conditions), which enters the expression for the eddy 
diffusivity. A choice of Z = E- v(?k’ ‘/i).\-,,)’ instead of 
E will generate a higher eddy viscosity close to a wall 
and, consequently, a faster transition and higher Nus- 
selt numbers. These seemingly small differences may 
be the source of inconsistencies in the quality of results 
reported by some authors. For example, Ozoc (‘1 rrl. 
[8] reported that the application of Jones and Launder 
model led to a collapse of turbulence even though the 
Rcr number was su~c~ently high. Another source of 
disagreement is the triggering of the turbulence field 
in case of vertical heated plate, which may produce 
quite a different outcome. Some other specific features 
of models applied by various authors will be outlined 
in conjunction with the discussion of our results. 

3. LAMINAR CONVECTION : NUMERICAL 

METHOD AND GRID OPTIMIZATION 

The numerical compLltations were carried out by 
means of a control volume numerical code based on 
the TEACH algorithm. Both the uniform and non- 

uniform grids in either staggered or collocated 
arrangements have been employed but the final com- 
putations presented here were carried out by employ- 
ing a mildly non-uniform, staggered grid. Two implicit 
numerical schemes were tested in parallel : the line-by- 
line (LBL) iterative method with the three-diagonal 
matrix algorithm TDMA and Stone’s strongly- 
implicit procedure (SIP). The latter method, with a 
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modification of Peril [2O]. was found to be more 
efficient and has subsequently been used for further 
computations. 

Tests of the numerical code were carried out on 
several selected test casts which were computed with 
different schemes (including the upwind- and central- 
differencing of the convective terms). and with differ- 
ent grid sizes and distributions. We first discuss briefly 
the case of laminar free convection in a square cavity 
with ditferentially heated vertical walls kept at either 
constant temperature or heat flux (or mixed), and 
with adiabatic horizontal walls. A number of available 
publications on experimental. analytical or numerical 
investigations of this Row case (some of them also 

covering the turbulent regime) renders it as very suit- 
able for test purposes. Besides. contrary to more com- 
plcx cases with mixed-boundary conditions, here a 
‘clean situation is generated in which the temperature 
gradient is perpendicular to the gravitational vector. 
The slightest temperature difference causes an instan- 
tancous fluid motion. Heat transfer mode depends on 
the overheat ratio and on the intensity of the conse- 
quent buoyancy force. At small buoyancy, in spite of 
fluid motion, the dominant heat transfer from the 
warm to the cold wall through the fluid in between 
occurs by conduction. As the wall temperature diffcr- 
ence increases, the convective mechanism becomes 
more important and gradually takes over the domi- 
nant role in the heat exchange. For the Ru number 
(defined with the cavity width and warmcold wall 
temperature difference) greater than I OJ laminar 
boundary layers form on each vertical wall. At a 
sufficiently high Ru number--of the order of IO”‘- 
the Row regime in the boundary layers changes from 
laminar to turbulent, but at the initial parts of the 
walls and in starting corners it may remain laminar 
even though the bulk Rrl number may bc well above 
the transition limit. A peculiarity of this flow case is 
the formation of an almost stagnant, vertically strati- 
fied, central core. 

For testing the numerical procedure and for study- 
ing the influence of grid spacing and distribution, we 
adopted here the well known ‘benchmark’ numerical 

solutions of Vahl Davis [2l] for Ru = 3.5 x IO’ to 

serve as a reference case. More recent computations 
of Hortmann et al. [22]. carried out for Ru = 104, 
IO5 and 10h with a multi-grid method and with an 
impressive grid refinement up to 640 x 640 CV, gen- 
erated very accurate solutions which can be employed 
for reliable testing of the applied numerical method 
and grid dependence studies. In addition, the present 
results have been compared with some of the available 
experimental data. 

The above described numerical method was applied to 
several sets of elementary control volumes up to 80 x 
80 CV. but here, for illustration, a comparison will 
be presented for only the two selected cases with rela- 
tively coarse numerical grids, i.e. 20 x 20 and 40 x 
40 in uniform and non-uniform arrangements. Also, 
the influence of upwind- and central-differencing 
scheme is presented. The computed values of the 
average Nusselt number at the vertical walls for 
various cases are shown in Table 1, together with the 
relative differences in regard to the reference value 
Ntr = 6.494, which was obtained by the interpolation 
of Vahl Davis solutions for three Rn numbers, i.e. IO”, 
IO” and IOh. As could be seen, the non-uniform grid 
with 40 x 40 CV with both the upwind- and central- 
differencing of the convective terms yielded the solu- 
tions which agree with the selected reference value 
within I “A. The result with a coarser grid of 20 x 20 
non-uniformly spaced CV causes a discrepancy within 
a tolerable 4%, while a uniform grid with the same 
number of CV produces an unacceptable error of over 
+ 18X. For comparison, some results of com- 
putations of Poleshacv [23] for the same geometry 
(deduced from graphs NM = c’ Rd’), for 20 x 20 CV, uni- 
formly distributed. for three different treatments of con- 
vective terms have also been presented in Table I. As 
shown, his computations with the upwind-differencing 
gave a value of Nu that differs from the Vahl Davis 
result by - 10.7% (note the opposite sign in com- 
parison with ours!), while the central-differencing 
gave much larger values. and close to our result 
obtained with upwind-differencing. The reason for 
such discrepancy between the results of Poleshaev and 

Table 1. Comparison of numerical grids and differencing schemes for the convection 
terms, Ra = 3.5 x 10’ 

No. of CV 
grid 

scheme 

40x40 20 x 20 

Non-uniform Uniform 

Upwind Central Upwind Upwind Central Samarski 

1 NU 6.539 6.556 6.756 7.614 
ANulNu* 0.69% 0.95% 4.03% 18.2% 

2 NU 5.80 7.70 6.75 
ANu/Nu* - 10.7% 18.6% 3.94% 

1 HanjaliC and Vasii-. 
2 Poleshaev (1989). 
* Reference value : Nu* = 6.494 (interpolated from the results of Vahl Davis, 1983). 
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present computations lies probably in other differ- 
ences in the applied numerical schemes and will not 
be elaborated here. It is, however, pertinent to note 
that in both cases a coarse uniform grid with 20 x 20 
CV performs unsatisfactorily. A much better agree- 
ment for the same grid seems to have been achieved 
by means of a higher order scheme of Samarski, as 
reported by Poleshaev. 

The computations with a non-uniform grid with 
40 x 40 CV for three other different Ra numbers, 104, 
IO5 and IO”. yielded results which were in excellent 
agreement with both the Vahl Davis and Hortmann 

et cd. solutions, as illustrated in Table 2. Hence, this 
grid configuration and the upwind differencing 
scheme were subsequently adopted as fully adequate 
for the computation of laminar flows in rectangular 
domains. It was noticed, however, that the solutions 
become more dependent on the fineness of the numeri- 
cal grid as the Ru number increases. The critical factor 
is the number of grid points ‘between the wall and 
the velocity maximum. It was found that the grid- 
independent solution for laminar convection requires 
at least six grid points in this domain. The same type 

of grid also proved to be adequate for the computation 
of turbulent flows, but only if the high Re number 

model with wall functions was used. However, since 
this approach appeared to be inadequate due to the 
uncertainties in specifying the wall functions, the com- 
putations of turbulent regimes were carried out by 
means of a low Re number turbulence model which 
requires a grid squeezed in the near-wall region, and, 
consequently, at least 60 CV in one direction. 

Table 2 presents a quantitative comparison of sev- 
eral characteristic parameters in a square cavity for 
three values of Ru, computed by our code and with 
the bench-mark computations of Vahl Davis and 
Hortmann et al. As seen, ail parameters agree very 
well. The differences between the averaged Nusselt 
numbers are in all cases smaller than I %. It is inter- 

esting to note that the above results agree within 5% 
with the correlation of Berkovsky and Polevikov (as 

cited in ref. [ 11) 

0 29 

recommended for I < A < 2 and a wide range of Pr 
and Ra numbers. 

Further tests have also been carried out by com- 
paring the details of the computed velocity- and tem- 
perature-profiles with the available experimental 
results. As an illustration, we present here the com- 
parison of the computed and measured results for two 
cases. The first case is a water filled cavity of aspect 
ratio A = 0.5 investigated experimentally by Ozoe et 
ul. [24]. The vertical side walls were kept at constant 
temperatures of 14.8 and 7.8-C, respectively, so that 
Ra = 1.52 x 10’. All other walls were isolated. Ozoe 
et al. measured the horizontal and vertical velocity 
components at several cross-sections along both ver- 
tical and horizontal walls, while the temperatures were 
measured by thermocouples. Figure I shows the mea- 
sured and computed profiles of the vertical velocity at 
four selected cavity heights. Computations, obtained 
with a non-uniform grid with 120 x 60 CV show excel- 
lent agreement with the measurements for all profiles 
in the lower part of the cavity, while some dis- 
crepancies were noticed in the upper region. As 
pointed our by Ozoe et uf. [24], it was noticed during 
the experiment that the temperature of the hot wall 
increased gradually from 14.7 to 15 C causing a higher 
fluid heating and, consequently, higher maximum vel- 
ocities than obtained by computations. It is interesting 
to note that the numerical computations of Ozoe et 
al. [S] gave a noticeable disagreement with their own 
experimental data even in the lower part of the cavity, 
which could be attributed to the coarseness of the 
applied grid (48 x 24 CV). Our computation with a 

Table 2. Comparison of characteristic parameters for a square cavity for three values of Ra number 

lo4 IO5 IO6 

Ra 1 2 3 1 2 3 1 2 3 

K,, (m s - ‘1 0.159 0.162 0.162 0.357 0.347 0.347 0.658 0.646 0.648 
YIH 0.835 0.823 0.826 0.858 0.855 0.855 0.869 0.850 0.850 

VW,, (m s- ‘1 0.195 0.196 0.196 0.682 0.686 0.686 2.187 2.194 2.205 
x/w 0.122 0.119 0.120 0.069 0.066 0.066 0.042 0.038 0.039 

Nu,,, 3.550 3.528 3.531 7.68 1 7.717 7.720 17.974 17.925 17.536 

ylH 0.143 0.144 0.146 0.085 0.081 0.082 0.037 0.038 0.039 

NU 2.240 2.243 2.245 4.508 4.519 4.522 8.857 8.800 8.825 

Alvullvut -0.147% 0.078% -0.244% 0.058% 0.651% 0.286% 
ANu/Nu$ -0.225% -0.078% -0.302% -0.058% 0.364% -0.285% 

1, present results; 2, Vahl Davis (1983); 3, Hortmann et al. (1989). 
t Normalized with solutions of Vahl Davis. 
2 Normalized with solutions of Hortmann et al. 
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FIG. I. Vertical velocity profiles close to the hot wall for a cavity with A = 0.5, Ru = 1.52 x 10’ and 
Pr = 9.17: O-xperiments of Ozoe et al. [24], ~~- computations of Ozoe et al. [8], - present 

computations. 
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FIG. 2. Temperature profiles close to the hot wall for a cavity with A = 0.5, H = 0.16 m, Ru = 1.52 x 10’ 
and Pr = 9.17 : O--experiments of Ozoe et al. [24], ~-- computations of Ozoe et al. [8], - present 
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x/w x/w 

FIG. 3. Normalized temperature profile at cavity midheight : (a) Ru = 3.5 x IO’, n-experiments of Bajorek 
and Lloyd [25], __ computations for adiabatic top and bottom walls, --Pcomputations for conductive 

top and bottom walls; (b) influence of Ra number. 

coarser grid of 60 x 30 CV also gave some differences 
in the values and positions of maximum velocity 
because of the insufficient resolution in this region, 
though overall agreement is not much different from 
the above described results with the fine mesh. The 
profiles of the temperature showed, however, an excel- 
lent agreement with the measurements at all tested 
cross-sections, as illustrated in Fig. 2. 

The second case which served for comparison is 
the experiment of Bajorek and Lloyd [25]. Figure 3 
presents the comparison between the computed and 
measured normalized temperature profiles at the cav- 
ity midheight for Ra = 3.5 x 105. Because of the rela- 
tively small dimensions of the cavity, the experiment 
was not well controlled and some unspecified heat 
losses were detected causing a small discrepancy 
between the results in the cavity center. The same 
reason seems to have caused a considerable difference 
between the measured and computed distributions of 
the Nusselt number along the vertical walls as shown 
in Fig. 4. In order to check the influence of possible 

0.0 5 la 15 
Nil 
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departure from adiabatic conditions at the horizontal 
walls, the same case was computed with horizontal 
walls assumed as being ideally conductive. As seen in 
Fig. 4(a), the agreement is much better. It stems, 
therefore, that realistic boundary conditions at the 
horizontal walls would bring the agreement to the 
desired accuracy. Figure 4(b) illustrates the influence 
of the Ra number. 

4. TURBULENT CONVECTION : GOVERNING 

EQUATIONS AND TURBULENCE MODEL 

In the course of investigations reported here, several 
different levels of turbulence modeling have been 
analyzed, starting with the simple, standard k--E 

model, modified accordingly to account for buoyancy 
effects in all equations. The aim was to find the level 
of modeling which can give acceptable agreement with 
experimental data for several families of buoyancy- 
dominated flows with different boundary conditions, 
but still remain simple enough to be employed for 

3 
Nil 

FIG. 4. Distribution of Nusselt number along the vertical wall : (a) n--experiments of Bajorek and Lloyd 
[25], computations for adiabatic top and bottom walls, - - - computations for conductive top and 

bottom walls ; (b) influence of Ra number. 
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the solution of more complex three-dimensional flows k 
()U, = -#Jo; 

__.._ i: T ~~~ d c’, 
with irregular boundaries. The highest modeling level u,ui~~+(l-C”,)~u,(‘,~ 

considered was the differential stress/flux model, 
I / 

which requires the solution of the equations for all 
second-order turbulence correlations represenling the + (1 -C,,i)/$# 

I 
(2) 

turbulent flux of momentum, heat and species. How- 
ever, this model was applied only to the two cases of I<-i?T 

unsteady penetrative convection of a mixed layer into 
()? = -CL& -. 

() a i c?.u; (3 

stably stratified fluid, when the heat flux gradient is 
atigned with-but opposed to-the gravity vector. 

where &, C$ Co? and f,,, are empirical coefficients, 

These two cases represent examples of pure buoyancy- 
to be discussed later. 

generated turbulence, and conclusions drawn in 
The turbulence kinetic energy k and its dissipation 

regard to the performance of various models in these 
rate c: are used to describe the evolution of the tur- 

two cases served as a basis for the choice of the model 
bulence field and to define the turbulence scale. The 

for a further use in computation of natural convection 
transport equations for these two variables were 

in cavities. More details are described in Hanjalic and 
solved in the following form : 

Vasic [26] 

For the case of two-dimensional turbulent natural 
convection in simple- and multiple-zone reactangular 
domains with arbitrary conditions it was found that 
satisfactory results require the treatment of turbulent 
heat flux vector at least in the algebraic form in order 
to account for major effects recorded by experiments. 
As will be shown later, the cavity aspect ratio is an 
influential parameter. It appeared that a natural con- 
vection in square- and low-aspect ratio cavities with 

thermally active side walls can be reasonably well 
predicted by a simple low Re number k-c eddy diffu- 
sivity model. However, the same model applied to the 
computation of natural convection in a tall cavity 
produces too late transition and consequently 
erroneous temperature and velocity fields in most parts 
of the central region. The disagreement with exper- 
iments increases as the aspect ratio increases. The 
algebraic model produced on the whole a better over- 
all agreement irrespective of the aspect ratio and Ra 
number. 

A further justification for adopting the algebraic 
model came from the com~~utations of the mentioned 
cases of penetrative convection. Even the standard 
eddy difusivity model for the vertical heat flux com- 
ponent produces results of quality close to that 
obtained with the full second moment model (and in 
close agreement with experiments) provided a modi- 
fication was introduced to ‘relax’ the direct pro- 
portionality of the flux to the mean temperature gradi- 
ent. This can conveniently be done by introducing the 
variable turbulent Prandtl number. as it was done 
earlier by Gibson and Launder 1271, and which, in 
fact. represents a form of an algebraic flux model. 

The basis of the adopted model (with Boussinesq 
approximation applied only to eliminate the Auc- 
tuating density in terms of temperature fluctuation) 
are the modeled differential transport equations for 
the turbulent heat flux OU;, and the temperature 
variance 6’. These equations can be truncated (e.g. 
Launder [4]), to yield a set of implicit algebraic 
expressions 

where 

P and G stand for the turbulence energy production 
by strain and buoyancy, respectively, E accounts for 
molecular effects in the production of 8, while &_ 
denotes the total diffusion of the variable CD, in which 
the turbulent contribution was modeled by the general 
gradient expression. 

In expressions (2) and (3) the coe~cients dfN and 
C:i are generally functions dependent on the tur- 
bulence energy unbalance. Here, adopted truncation 
approximations $,, and C:: take the following forms, 

respectively 

where R represents the ratio of the thermal-to- 
mechanical turbulence scale. 

The expression (3) can be used to eliminate 0’ from 
equation (2). By introducing for convenience a gener- 
alized form of ‘buoyancy parameter? 

~ ~_ -..-. _ ..-- -.. .~_..~.. __.._ ._~._ 
TNote that Ben is an asymmetric second rank tensor and 

that the first index denotes the direction of the gravitation 
vector. 
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(8) 

the turbulent heat flux vector can be written in the 
form of a recurrent expression 

k ou, = -h, ; [( _ar --au. 
u,u,, +vOu,+ 

ox, ox, 

where 

5 = (1 - G2) ; r? = a1 -Cod. (10) 

Expression (2) can also be written explicitly for each 
flux component in the form of a general eddy viscosity 
expression in which the heat flux is proportional to both 
the mean temperature- and mean velocity-gradients. 
This form may prove to be computationally 
more convenient than the implicit expression (2). In 
this case, the mutual coupling between the flux com- 
ponents is accounted for through variable turbulent 
Prandtl-Schmidt numbers which take the form of 
second rank tensors as described by Hanjalik and 
VasiC [26]. 

In the present work we deal only with rectangular 
two-dimensional cavities. For the selected coordinate 
system with X, in the horizontal direction and x2 
denoting the vertical direction upwards so that 
g,(O, -g, 0), it follows that B, , = B,, = 0. The alge- 
braic expressions for the horizontal and vertical heat 
flux read now 

- 
ou, = - 

As can be seen, both expressions contain all gradients 
of the mea? temperature and mean velocity. Exclud- 
ing the cavity corners, streamwise gradients are sub- 
stantially smaller than the lateral ones. Nevertheless, 
it has been noticed that streamwise gradients have an 
influence upon the prediction of flux components, 
especially in tall cavities and with mixed boundary 
conditions. This is particularly true for the flux com- 
ponent which is aligned with the gravitation vector- 
here @u,-which governs directly the buoyant pro- 
duction of the kinetic energy G. Although found to 
be usually less than one-third of the shear production 
in the outer layer, the buoyant production becomes 
important in the inner wall layer and its adequate 
modeling is essential for accurate predictions of the 
whole flow domain. 

Expressions (11) and (12) contain the components of 
the Reynolds stesss tensor. They can also be expressed 

in the algebraic form. However, having in mind a 
possible extension of the model to more complex 
and three-dimensional geometries, we explored sim- 
pler options. It is expected that in buoyancy domi- 
nated flows an accurate prediction of individual nor- 
mal stress components may not be of crucial 
importance as compared with the heat flux vector. As 
can be inferred from the measurements of Tsuji et al. 
[28] in a boundary layer along a heated vertical plate, 
the ratio of the vertical normal stress and kinetic 
energy remains reasonably constant around the value 
of 1 .I (within 15%) over the whole layer cross-section, 
while the ratio of the lateral component and kinetic 
energy varies between 0.25 in the inner region to about 
0.4 in the outer region. These findings give grounds to 
adopt u&k = const. for the evaluation of individual 

normal stresses appearing in expressions (11) and 
(12). For the same reason, the shear stress was evalu- 
ated from the standard eddy viscosity expression 

u,ll,= ;ka,,-v,(z+!$$ 

with t’, = C,A,(k’/&). 
The forms of the two functions of turbulence Re 

number are adopted from Launder and Sharma [ 191 

f, = exp A = 1-0.3exp(-Re,?). 

(13) 

The empirical coefficients in the k and E equations are 
those which have been generally adopted for iso- 
thermal flows. The exception is the coefficient C, 3 for 
which no general consensus has as yet been achieved. 
Values from 0 to C,, , have been proposed by various 
authors. It is obvious that the zero value has no physi- 
cal justification since in pure buoyancy-generated tur- 
bulence like in a stagnant fluid heated from below, 
this is the only remaining source of E. Without this 
term, E would decay very fast and there will be no 
provision in the model to describe the turbulent energy 
sink. More recently (e.g. Ince and Launder [13]) there 
has been a tendency to lump the buoyancy- and shear- 
production in the source of E equation together with 
a single coefficient, i.e. C,, = C,,, which implies that 
both the shear- and buoyancy-production play the 
same role in the energy decay dynamics. This proposal 
looks attractive because the number of coefficients in 
the model is reduced by one. However, our tests with 
the penetrative convection of a mixed layer in unstable 
conditions showed that the results are sensitive to the 
choice of C,, and the best agreements with exper- 
iments for two earlier mentioned cases have been 
obtained with C / 3 z O.SC,,, In the case of vertical 
heated surfaces the predictions are less sensitive to the 
choice of C,, presumably because the shear pro- 
duction dominates the turbulence dynamics. We 
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adopted, therefore, C,, = 0.8 for all cases in con- 
junction with the algebraic flux model (AFM). 

The coefficients in the heat flux expression (2) were 
adopted mainly from literature (e.g. Launder [4]) with 
some modifications. A strict application of the 
algebraic modeling will imply the computation of the 
coefficients &, and Cz in the function of the pro- 
duction and dissipation of the turbulence energy and 
temperature variance, as given by equations (6) and 
(7). In line with our goal to arrive at the simplest 
form of the model which will still yield satisfactory 
predictions of the considered range of cases, we 
explored the behavior of these two functions. An 
inspection of available data for a boundary layer 
along a vertical heated plate revealed a large dis- 
crepancy. The data of Tsuji et al. [28] suggest in the 
outer region, for _r+ > 100, that (P+G)/s is about I, 
while in the inner region the ratio decreases fast to 
become even negative very close to the wall because 
of large, negative shear production. These authors 
claim that the turbulence energy source here is domi- 
nated by the pressure straining extraction of thermal 
energy from the mean motion. This term is usually 
neglected on the grounds of continuity requirements 
if the fluid is regarded as incompressible. Although 
these findings may have a justification in a region very 
close to a heated plate with a large overheat ratio, it 
is hard to accept that this effect is so significant. On 
the other hand, the computations of To and Hum- 
phrey [29] and our own, yield a ratio of (P+G)/c: 
between 1.5 and 2 in the outer region, suggesting 
a high surplus of turbulence energy which is being 
convected downstream and diffused towards the inner 
region. Of course, none of the mentioned models 
accounts for the pressure strain source of the kinetic 
energy. Similarly, the ratio of P,,/E,~ of Tsuji et al. 

reaches a value of about I .8 at J+ z 15, to drop shar- 
ply both in the inner and outer regions. Based on our 
computations of a flow along a heated vertical plate, 
which does not account for the turbulence energy 
generation by the pressure straining, we found that- 
with an exception very close to the wall-both 4,) and 
Gil assume reasonably constant values. Figure 5 shows 
$,, across the boundary layer at a heated vertical plate, 

computed with C,,, = 3.0 and with the assumption 
that P,, = a,,. On the basis of these findings we adopted 
$,, = 0.28 and Cl; = I. It is interesting to note that for 

local equilibrium of the kinetic energy equation 
(P+G) = E the latter value implies that the ratio of 
the thermal-to-mechanical turbulence scale R = 0.5. 
This is very close to the experimental results of Tsuji 
et al. [28] who found that R remains almost uniform 
with values between 0.55 and 0.6 in a large portion of 
the boundary layer cross-section for 15 < _r+ < 300. If 
one assumes that (P+ G)/E and P,,/E~, = 1 the adopted 
value of b,, = 0.28 will require that C,,, = 3.57, which 
is close to 3.7 as suggested by Tavoularis and Corrsin 

1301. 
As for other coefficients, we adopted Csz = 

C,, = 0.4 so that 5 = 8 = 0.6. With this set of coeffi- 

IL , 
0.2. 

0.0 

FIG. 5. Computed variation of d,, across the boundary layer 
at a heated vertical wall. 

cients the model produced results of a consistent quality 
and in acceptable agreement with available experi- 
ments for the case of free convection along a heated 
vertical plate, in a mixed layer heated from below 
or cooled from above (Hanjalic and Vasic [26]), as well 
as in rectangular cavities with different boundary 
conditions and aspect ratio. A summary of the co- 
efficients is given in Table 3. 

4.2. Simpler modds 
For comparison, some cases have also been com- 

puted by applying several variants of simpler models. 
The first is the standard eddy diffusivity low Re num- 
ber k-c: model in which the turbulent heat flux is 
expressed in the form of simple gradient diffusion, i.e. 
Ou, = -(v,/a,,)(aT/r?.u,) (hence denoted as ‘SGD’ 
model) with the same form of k and E equations. The 
second model follows Ince and Launder [13] and 
employs the generalized gradient diffusion hypothesis 
(denoted as ‘GGD’) for the heat flux vector in form 
Qu, = -C,(ki@/~)(dT/&x,) with the value of 
C,, = 0.15, as recommended by the authors to satisfy 
the horizontal shear flows with main velocity and 
temperature gradients in vertical direction. The third 
model considered is the same as the previous, but with 
a neglect of the streamwise temperature gradient in 
the expression for OU;, and denoted for that reason 

as ‘partially’ generalized gradient hypotheses 
(‘PGGD’).? Ince and Launder reported that the 
application of the Launder-Sharma [19] model with 

Table 3. Summary of coefficients 

CA co c c, / c, 1 c 1 _ 4 
0.20 0.1 I 0.15 1.44 1.92 0.8 0:6 0:6 0.28 

? In fact, the expression for 0~~ which enters the buoyant 
production of k in the paper of Ince and Launder [13] con- 
tains only the lateral gradient indicating that the authors 
have neglected the streamwise gradient as unimportant. The 
matter is discussed in more detail later. 
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B in the eddy viscosity formula produced too high a 
Nu number in an infinite cavity. The introduction of 
the GGD hypothesis, but also of the wall correction 
term of Yap (quoted in ref. [13]) in the Z-equation to 
reduce the excessive slope of the length scale in the wall 
region, brought the results into a very good agreement 
with experiments. We have tested the GGD and 
PGGD both with and without Yap correction. The 

former models are denoted as GGD +Y and 
PGGD + Y, respectively. 

5. RESULTS AND DISCUSSION 

We consider first the two cases of rectangular cavi- 
ties with side heating and cooling and adiabatic hori- 
zontal walls. The first geometry is a square cavity and 
the second is a tall cavity with an aspect ratio of 5 : 1. 
In both cases the vertical walls were assumed to be 
isothermal. The considered fluid was air and the 
covered Ra numbers between IO’” to 1012. In order to 
investigate the implication of the Boussinesq hypoth- 
esis, we adopted first a small temperature difference 
of only 2 K so that the covered Ra number range was 
achieved by varying the cavity size. Later we also 
tested some cases with larger temperature differences 
up to 46 K. No reliable experimental data are yet 
available in the literature for field properties in a 
square cavity which could serve as a basis for veri- 
fication of the computations. For this purpose we 
have used mainly the correlations for the Nusselt 
number on the side walls, the computations of other 
authors and the measured data for field properties 
of Cheesewright and co-workers [3 I-331 for the 5 : 1 
cavity. 

5. I, Squure cavities with thermally active verticul walls 

We present first some results of computation for an 
air-filled square cavity of dimensions 7.8 x 7.8 m. The 
temperature of the warm wall was T,, = 30°C and of 
the cold wall T, = 10°C yielding a value of Rayleigh 
number Ra = 10”. With these parameters, the case 
corresponds closely to a simple, but real situation 
that can be encountered in space heating (e.g. double 
glazing). Computations were performed for a non- 
uniform numerical grid with 120 x 120, 120 x 80 and 
100 x 80 CV, squeezed in the regions next to the ver- 
tical walls so that at least 30 points fall within the wall 
boundary layers. The coarsest mesh produced only 
a marginal difference in the mean Nu number. The 
computations were started with some initial tur- 
bulence field. No special triggering was found necess- 
ary and provided the initial ratio of k and E was within 
a range which ensured that the initial eddy viscosity 
is about IO times higher than the molecular one, tur- 
bulent solutions were obtained at all considered Ra 
numbers greater than 5 x 10”‘. A different (‘less tur- 
bulent’) solution was detected at Ra = 10 I2 in the case 
of very low initial level of turbulence, indicating a 
possibility of non-unique solutions, as found also by 
Henkes et al. [17]. In this case the transition was 

delayed and its position could not be determined with 
certainty. The computations required a much longer 
time to converge and did not produce conclusive evi- 
dence of possible bifurcation. These results will be 
omitted from further consideration and we will dis- 
cuss only the fully turbulent results which showed a 
full consistency for a range of initial conditions. 

A selection of computed results is presented in Figs. 
669. We start the discussion with the fully turbulent 
case for Ra = 1012. Figures 6(a)-(c) illustrating the 
streamlines, temperature- and turbulence-contours, 
show clearly that the main motion of the fluid occurs 

within the thin boundary layers along the vertical 
walls. while in the rest of the cavity space a strong 
density stratification is established and the fluid flows 
slowly in the horizontal direction from the cold 
towards the warm wall. Along the vertical walls the 
fluid velocity reaches a maximum slightly downstream 
from the midheight of each wall. Secondary vortices, 
which usually form at smaller Rrr numbers in the 
bottom left and upper right corners, are in this case 
hardly detectable ; they are very elongated and drawn 
towards the corners as indicated by the negative values 

of the vertical velocity components. 
The normalized temperature profiles, shown in Fig. 

7(a) at five different horizontal positions, collapse 
almost fully into one curve showing a high level of 
similarity except for the slight departure at the cross- 
section very close to the warm wall. A blow-up of the 
profiles very close to the wall confirms the fulfillment 
of the adiabatic conditions at the horizontal walls. 

The influence of the Ra number around the tran- 
sition is illustrated in Figs. 7(b) and 8(a)-(c). As seen, 
at Ra = 10’” the turbulence collapses and the com- 
putations produced a practically laminar solution. A 
small but persisting level of turbulence was obtained 
for Ru = 5 x IO”‘, but typical turbulent solutions 
appeared only at Ra around IO”. This is best illus- 
trated in Fig. 8 which shows the profiles of the vertical 
mean velocity, turbulence kinetic energy and eddy 
viscosity for a range of Ra numbers. In all cases. the 
turbulence field is characterized by the concentration 
of turbulence in the upper left and lower right wall 
regions. The rest of the flow field is almost non- 
turbulent, confirming a strong stable stratification 
in the central region of the cavity. Even in the case of 
highest considered Ru number of IO ’ 2, which is well 
above the critical value, the intensity of turbulence 
is not high, with the maximum ratio of eddy-to- 
molecular viscosity at the midplane of only about 
140. These features illustrate best that reliable 
predictions could only be expected with turbulence 
models which incorporate adequate low Re number 
modifications. 

The distribution of Nusselt number along the 
warm wall for the three different Ra numbers (10”~ 
10 I’) are shown in Fig. 9 (along the cold wall identical, 
but anti-symmetric profiles have been obtained). As 
expected the largest values are obtained in the lower 
corner where the fluid, cooled by the cold wall, comes 
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FIG. 6. Flow and temperature field in a square cavity at Ra = IO”: (a) streamlines; (b) isotherms; (c) 
turbulence intensity. 

into contact with the warm wall. A sharp decrease 
follows so that the Nu number falls practically to zero 
in the upper corner. For the three higher Ra numbers 
the profiles show a change of the gradient-an 
increase of Nu--at various positions, corresponding 
to the laminar-to-turbulent transition. In the case of 
Ra = 5x 10’” the transition is hardly visible and 
occurs roughly at .,>/I? = 0.4, while in the case of 
Ra = IO", the transition is conspicuous and occurs 
at _v}H = 0.2. 

We also carried out the computations for the same 
cavity by using the three versions of the eddy d~ffusj~ty 

models as described in Section 4.2. The obtained mean 
temperature and vertical velocity profiles show a very 

similar ~ha~~~our. The SGD model yielded a some- 
what fewer ku-bulence level as expected while GGD, 
PGD and AFM gave only marginal non-systematic 
differences. 

To illustrate the effect we compare the averaged 
Nusselt numbers obtained with different models with 
the correlation Nu = C Ru"", which has been gen- 
erally accepted in literature as valid for the turbulent 
natural convection in cavities with thermally active 
verticaf waifs over a farge span of Pr numbers and 
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FIG. 7. Computed temperature profiles in vertical cross-sections; (a) for Ra = IO”, with a blow up of the 
region adjacent to the adiabatic bottom ; (b) influence of Ru number. 

aspect ratios A.? As is well known, there is still no 
consensus on the value of the constant C, but most 

suggestions seem to fall between 0.043 and 0.047. So 

for instance, the experiments of McGregor and Emery 
[34] with cavities of aspect ratio from I to 40 and for 
Pr numbers from 1 to 20, with constant heat flux at 
the warm wall and isothermal cold wall (horizontal 
walls were adiabatic) for the range of Ra number 
of IOh-IO’ suggest that C = 0.046 gives the best fit 
through the experimental data. In similar experiments 
with water in cavities of aspect ratio from 1.5 to 61, 
Cowan et al. [35] confirmed the same type of relation- 

ship. but found that for Ra = 2x lo’-2x IO” the 
value of C should be 0.043. On the basis of an approxi- 
mate theory of boundary layer on the vertical walls 
Raithby and Hollands [36] arrive at almost the ident- 
ical result suggesting that C = 0.044. Numerical com- 
putations of Ince and Launder [13] for cavities of 
several aspect ratios between 1 and co indicate a mar- 
ginal influence of A, and confirmed the above general 
correlation with C = 0.047 approximating best the 
obtained results, except for A = co, for which 
C = 0.05 seems a better value. On the basis of data of 
several authors for an infinite heated vertical plate, 
reduced to a square cavity with an assumption that 
the cavity core region is isothermal, Henkes et al. [17] 
also found that C = 0.047. 

The difference between the mentioned values of the 
coefficient C is small and does not influence much the 
Nusselt number. However, the value of C reflects in a 
sense the position of the transition. If one assumes 
that for a laminar natural convection in a cavity at 

tThe range of Ra numbers for which the correlation is 
claimed to be valid often includes values far below the critical 
Ru number, implying that the same correlation is valid for 
the laminar regime, contrary to the findings of some other 
authors, see Section 5.3. 
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FIG. 9. Nusselt number along the isothermal walls : (a) influence of Ru number; (b) comparison of different 
turbulence models. 

higher Ra numbers the heat transfer correlation can 
be expressed as Nu = C, Ra”“, as suggested by some 
authors (see Gebhart et al. [l], pp. 75&751)t at the 
intersection of the two lines-representing the laminar 
and turbulent correlation-in a Nu-Ra diagram, may 
be conditionally regarded as corresponding to the 
critical Ra number, Rat,, at which the laminar-to- 
turbulent transition occurs. It follows that 

Rat, = (G/C) “, and hence is sensitive to the values 
of C, and C. Of course, the choice of C, is equally 
uncertain. If we assume, for illustration, that 
C, = 0.30, as suggested by Henkes er al. [17] for air, 
the critical Ra number varies between 4.57 x lo9 for 
C = 0.047 to 1.33 x 10” for C = 0.043. Of course, a 
real critical Ra number will occur at somewhat higher 
values than those corresponding to the crossing point 
of the two correlations. Figure 10 shows the above 
relationship for C, = 0.30 (for air) and C, = 0.32 (for 

water) as suggested in ref. [17]. Most observations 
and computations suggest that for air, the transition 
occurs at Ra just above 10 lo and at a slightly higher 
value for water, suggesting that more appropriate are 
higher values of the coefficient C, say about 0.046 
0.048. Our computations with various turbulence 
models yielded almost constant values of C inde- 
pendent of Ra in the considered range between 10” 

and lOi’, but dependent on the chosen model. So for 

instance, the application of standard low Re number 
k-E model of Launder and Sharma yielded for a 
square cavity an averaged value of C = 0.044 (in fact 
C = 0.0447 for Ra = 10” and 0.0436 for Ra = 1012). 
The model with lateral temperature gradient replacing 
the streamwise one in the expression for the vertical 
heat flux with Yap correction yielded an averaged 
value of 0.0456, while the present algebraic model 

t Our computations seem to approach this correlation only 
at Ru higher than 10’. while for lower Ra number the 
exponent is about 0.29, as discussed earlier. 

gave C = 0.0483. In light of the previous discussion 
we regard the latter result as more accurate. 

5.2. Hi~yh aspect ratio rectangular cavities with side 

heating and cooling 

We now turn to the cavity with a 5 : 1 aspect ratio. 

Experimental investigation of this geometry by 
Cheesewright et al. [31-331 constitute a good exper- 
imental basis for validation of the models and com- 
putation codes. As in the case of a square cavity, 
we carried out the computations by the same three 
versions of the eddy diffusivity model in addition to 
the present algebraic model. The computations were 
made by using a staggered, non-uniform grid of 
60 x 60 control volumes, as well as a finer grid with 
80 x 100 CV, which produced almost the same quality 
of results. 

Validation of the computations were made on the 

basis of comparison with experimental data at the 
cavity midheight cross-section which showed to be a 
sensitive test for the turbulence models. As the results 
showed, both the standard SGD model and GGD 
model produced laminar-like solutions with a high 
peak and a steep gradient of the vertical mean velocity 

36 

FIG. 10. Ru number at the intersection of laminar and tur- 
bulent heat transfer correlations for air and water. 
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in the wall region, as illustrated in Fig. 11 (a). Because 
the turbulence level is small, the effects of Yap cor- 

rection as well as of C,, is insignificant. Only after we 
omitted the streamwise gradient (PGGD model) did 
the solutions approach close to those reported by Ince 
and Launder [13], but with a slightly higher peak of 
the vertical velocity close to the warm wall, Fig. I 1 (b). 
Surprisingly, we did not notice much of an effect of 
the Yap correction. It was only after we changed the 
value of the coefficient C,, from 1.44 to 0.8 that the 
effect of Yap correction became visible. Indeed, in this 
case the solution without the correction of Yap was 
‘too turbulent’ and this correction brought the results 
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FIG. I 1. Vertical velocity profiles at midheight of 5 : 1 cavity : 
comparison of different turbulence models. 
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FIG. 12. Distribution of the vertical mean velocity close to 
the hot wall at midheight in 5: I cavity: O-experiments of 

Cheesewright et al. [3 I], -computations. 

into a very good agreement with the experimental 
data. 

The results obtained with the algebraic flux model 
AFM are shown in Fig. 11 (c). As can be seen, the 
quality of agreement with the experiments is accept- 
able, though slightly inferior in comparison with those 
obtained by PGGD mode1 with Yap correction. The 
agreement is in particular very good in the near-wall 
region as shown in detail in Fig. 12. Excellent agree- 
ment between the measured and computed velocity 
slope at the wall yielded a good prediction of the wall 
shear stress at this position. A plot of the distribution 
of the wall shear stress along the heated walls, Fig. 
13, does not, however, reflect the same quality ol 
agreement at all positions. The results for the cold 
wall are plotted for convenience upside down so that 
the computed curves collapse into one, reflecting an 
ideal symmetry of the flow. This symmetry has obvi- 
ously not been achieved in the experiment. As 
reported by the authors, the flow rate along the cold 
wall was smaller than along the warm wall due to 
some downward flow along the lateral walls. 
However, unsatisfactory agreement with the data 
along the warm wall (which were, in fact. simulated 

o~owO~ 2.5 

Hlml 

FIG. 13. Distribution of shear stress along the hot and cold 
walls of 5 : 1 cavity. 0 Experiments of Cheesewright and 

King [33], hot wall; A cold wall; __ computations. 
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by the computations), cannot be fully explained. 
Reported difficulties and inherent uncertainties in 
measuring the velocity very close to the wall, from 
which the wall shear stress was deduced, are most 
probably one of the causes for the disagreement. The 
other source of discrepancy may come due to some 
uncontrolled loss of heat at the top wall. as reported 
by the authors, which can cause a deformation of the 
velocity profile along the upper region of the warm 
vertical wall, as compared with the computed ideally 
adiabatic top wall conditions. 

The variations of the mean temperature across the 
cavity at its midheight cross-section (not shown here) 
confirm a very good agreement in the near-wall 
region. In the core the computations yielded almost 
uniform temperature of 45 C, which is exactly half 
of the temperature difference between the warm and 
cold wall (68 and 22 C. respectively) reflecting an ideal 
symmetry. The experiments, however. showed about 
a 10% lower value. The disagreement. found also 
by Ince and Launder, probably has its origin in an 
uncontrolled heat loss through the later walls, as 
admitted by Cheesewright and King [33] and 
Cheesewright et ul. [3l]. 

It should bc recalled that the algebraic flux model 
given by equations (I I) and (12) contains all tcm- 
perature and mean velocity gradients. Although the 
lateral temperature gradient is dominant in the buoy- 
ant generation of turbulence, in particular along the 
initial portion of the cavity vertical wall (where at the 
considered Ro numbers laminar-to-turbulent tran- 
sition occurs), the streamwise gradient also seems to 
play an important role. In addition, it could be inferred 
from the measurements of Cheesewright et al. [3 l] that 
around the maximum of OU, the term Qu,(aU,/ax,) 
amounts to at least 10% of the major generation term 
~(?T/(:.Y,) in the region of peak u,u?. A similar 
order of magnitude has the term OuZ(FU,/i.u,), 
because the peak Ouz is about three times larger than 
that of Ou, Taking into account that the positions of 
the maxima of Bu,, Hu, and i&ii, are not coincident, 
it could be concluded that the strain rate part of 
the turbulent flux is not negligible. One should also 
bear in mind that the fluid in the inner wall layer 
(between the wall and the velocity maximum) accel- 
crates until the transition occurs and then reduces to 
a turbulent profile with a smaller peak. Depending on 
the cavity aspect ratio it can accelerate further. but 
then it will decelerate as the end wall is approached. 
In the outer region the fluid will accelerate up to 
roughly midheight and then start to decelerate. All 
this will cause changes in the sign of the streamwise 
gradient of the vertical velocity, contrary to the 
streamwise gradient of the mean temperature. which 
remains monotonic. It is hard to conceive that all 
these peculiarities in the behavior of the exact terms 
in the differential equation for the turbulent heat flux 
can be imitated by a simple eddy diffusivity hypoth- 
esis. A success of the PGGD model seem to bc more 
a coincidence which may come from mutual canceling 

of the terms containing the streamwise gradients of the 
temperature and vertical velocity, which-in the inner 
layer at side wall just after the transition-have a same 
order of magnitude, but opposite signs. 

A further support for this conclusion may be found 
in an inspection of the computed shear stress u,uyand 
lurbulent heat flux components IIu, and 0~~. shown 
in Figs. 14(a)-(c) at the cavity midheight. Presented are 
the experimental data and the computations obtained 
with PGGD+Y model (dotted line) and with the 
AFM. The computed turbulent shear stress and the 
heat flux components did not show, however, the same 
quality of agreement. As can be seen in Fig. 14(a) 
the predicted u,u2 (in both casts the same eddy vis- 
cosity hypothesis was used) at the midplane has a 

0.0 0.2 0.4 0.6 0.8 10 
x/w 

0.0 0.2 0.4 0.6 0.8 1.0 
x/w 

FIG. 14. Turbulence correlations at midheight of 5 : I cavity : 
(a) shear stress; (b) horizontal heat flux; (c) vertical heat 

AUX. 
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similar shape and a same order of magnitude, as 
obtained by Cheesewright and King [33]. Here it 
should be noted that these experimental uluz data 
were not measured directly, but estimated from the 
integration of the mean momentum equation across 
the boundary layer by feeding the measured mean 
velocity profiles. Several approximations were intro- 
duced which limit the analysis to the midheight region 
far away from the corners. Even here, some approxi- 
mations are questionable, such as a neglect of the 
pressure gradient. Because of the lack of diagonal 
symmetry of the mean velocity profile, the evaluated 
data for U,u, of Cheesewright and King show an 
appreciable asymmetry. Since the integrals of both 
profiles of the shear stress across the cavity seem to 
bc very close, it could bc expected that fully symmetric 
boundary conditions in the experiment would pro- 
duce the UK profile much closer to that obtained by 
our computations. The comparison of U,U, at 
y/H = 0.1 in the same figure shows that the com- 

putations agree very well with the experimental data 
except close to the warm wall where the computed 
level of the turbulent stresses is negligible. At 
y/H = 0.9 (not shown here) the disagreement is very 
large. While the computations gave an almost anti- 
symmetric profile, the experiments show a remark- 
able lack of any symmetry with very high values of 
experimentally obtained u,u2, which is difficult to 
justify. Inadequacy of the method used by 
Cheesewright and King [33] for corner region may 
be the source of error. but this would reflect also 
in the estimation of u,uz at y/H = 0.1. which, as 
shown earlier, agreed well with our computations. It is 
likely that the major source of error comes from the 
mean velocity profile which at this position was much 
affected by the earlier mentioned heat loss at the top 
wall. The quality of agreement of the U,U? profiles at 
the considered positions reflects the agreement between 
the computed and estimated wall shear stress, shown 
in Fig. 13. Nevertheless, it could be concluded that 
the comparison justifies the use of the simple eddy 
viscosity formula for computing the shear stress, at 
least at the region around the cavity midplane. 

The agreement between the measured heat flux 
components and those computed by the PGGD+Y 
models are considerably poorer. Figure 14(b) shows 
a comparison of the data of Bowles and Cheesewright 
[32]-measured directly by a LDA and a ther- 
mocouple-of the horizontal heat flux component OU, 
and those computed at the position slightly above the 
midplane at y/H = 0.63 (experimental data for the 
midplane were not available). The predictions close 

to the hot wall agree reasonably well with the measure- 
ments, while those at the cold wall show a higher 
discrepancy. Bowles and Cheesewright admitted that 
the measured data are not free from error because the 
laser beam had to be angled toward the wall. 
However, their calculation from an integral balance 
applied to the measured data of Cheesewright and 
King produced a similar profile, suggesting that the 

data have a realistic shape and order of magnitude. 
In light of the mentioned asymmetry in the exper- 
iment, the satisfactory agreement of the computed 
and measured data at the hot wall may be regarded 
more as a coincidence. 

However, a striking disagreement appears between 
the computed (by PGGD+Y model) and measured 
profiles of the vertical heat flux component Ou,, as 
shown in Fig. 14(c). As discussed earlier, this flux 
component plays the principal role in the dynamics 
of turbulence kinetic energy in buoyant flows and 
influences directly the overall predictions of all quan- 
tities. The computed peak values in the wall vicinity 
are four to five times smaller than the measured ones. 
It is therefore more than surprising that the excellent 
agreement was achieved in mean velocity and tem- 
perature profiles, while the most important heat flux 
component was predicted very poorly. 

The computations by the algebraic expressions (I 1) 
and (I 2) yielded considerably higher values of both 
heat flux components across the whole cavity cross- 
section, as seen in Figs. 14(b) and (c) (solid lines). 
And, while the horizontal heat flux was much over- 
predicted, the obtained vertical heat flux came to a 
close agreement with the measured data. 

In fact, an inspection of the turbulence field, illus- 
trated in Fig. IS by contours of the normalized tur- 
bulent viscosity v,/v, shows a concentration of tur- 
bulence with v,/v reaching a value of about 100 at 
y/H = 0.75 at the warm wall (and, symmetrically, at 
y/H = 0.25 at the cold wall). At the cavity midplane 
at y/H = 0.5 the ratio i-,/v is about 70, but the gradi- 
ents of the turbulent viscosity are considerable. Hence, 
the solutions in the central region of the cavity height 
will be sensitive to even small changes in the applied 
model which will cause a shift of the eddy viscosity 
gradients up or down, without affecting much the 
maximum turbulence levels in the upper right and 
lower left corners. 

An argument in favour of this conclusion is the 
finding that the earlier discussed eddy diffusivity 
models, which failed to produce acceptable results at 
the cavity midplane, yielded similar profiles of the 
vertical mean velocity at y/H = 0.25 and 0.75 as well 
as at y/H = 0.1 and 0.9 (not shown where), as the 
PGGD and AFM models. 

The computations of Nusselt numbers for three 
values of Ra numbers IO lo, IO’ ’ and IO” follow 
very well the correlation Nu = C Ra”’ with 
C = 0.048 _t 0.00 I, which agrees with our findings for 
a square cavity. This confirms the conclusions of lnce 
and Launder [ 131 that the aspect ratio has no sig- 
nificant influence upon the heat transfer correlation 
at least in the considered range of A = I-5. 

5.3. Heut tronsfir correlution.fbr side heuted rmities-- 
some fiuther remarks 

It is worth mentioning at this point that some results 
reported in the literature do not follow the heat trans- 

fer correlation Nu = CRa’13, as also shown in Fig. 16. 
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The data of Bauman er ul. [37], obtained with water 
in a cavity with aspect ratio A = 0.5 and for Pr = 2.6- 
6.8 for a relatively narrow range of Rn number of 2- 
6x IO’“. in spite of a considerable scatter. follow a 

A O.S7SEOO2 
a o.ii~em2 
c 0.759EO02 
D 0.6990302 
E 0.635X002 
F S.57SEOOZ 
0 0.!i19E002 
H 0.459EOO2 I 0.400E002 
3 0.340E002 
K 0.28OCOO2 
L 0.220c002 
N 0.160E002 
N O.IOOEOO2 
0 0.407c001 

FIG. 15. Strcumlines and contours of turbulent viscosity in 
a 5 : 1 cavity. 

FE. 16. Heat transfer correlation : comparison of different 
experimental data and computations. 
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difTerent Nu-Ru number dependence with an 
exponent of Ra visibly smaller than l/3. It is inter- 
esting to note that the experiments of Nansteel and 
Grief 1381 with a cavity of the same aspect ratio 
A = 0.5, but with a partial vertical division hanging 
from the ceiling. obvained a correlation with a similar 
slope, Nu = 0.762Ap’i.“‘Rcr” “’ (Ap is the aperture 
ratio) for RLI between3 x IO”‘and 1.1 x 10”. but their 
values of Nu numbers for a case without partition, 
Ap = I, exceed those of Bauman rt ul. by about 17%. 
To this group of results one may add the experimental 
correlation Nu = 0.62/Q?‘” of Bohn Tut ul. [39] 
obtained in a cubical cavity with several combinations 
of heating and cooling of vertical wails, while the 
horizontal walls were kept adiabatic. The case with 
the two neighboring vertical wails heated and the 
other two walls cooled (HHCC combination) could 
bc compared with the presently considered case of 
square cavity with opposite walls heated and cooled 
if the coeficient in the above correlation is divided 
by two as to match the corresponding temperature 
difference between the warm and cold walls. The 

resulting correlation (with the coefficient c‘ = 0.31), 
shown also in Fig. 16, follows a similar slope as that 
of Nanstccl and Grief. and Bauman. but yields con- 
siderably smaller values of Nlr numbers (c.g. for 
Ru = IO ’ ’ this difference is about - 13%). A common 
feature of all three cases is that no turbulence was 
detected. although the Ro numbers were high. The 
smali aspect ratio of 0.5 in both Bauman, and Nan- 
steel and Grief cases may be the reason for persistence 
of laminar regime at such high Ru numbers. but these 
findings as well as the discrepancy in magnitudes of 
Ntr numbers need further clarification. 

Figure 16 shows a graphical comparison between 
results of various authors together with our 
computations. 

In most real situations the boundary conditions are 

usually of a mixed type, and often non-uniformly 
distributed. Kirkpatrick and Bohn [2] carried out 
detailed measurements and flow visualization tests of 
free convection in a cubical enclosure with an interior 
dimension of 0.305 m filled with deionized water. Four 
diRerent configurations of boundary conditions were 
generated by exposing the top wall and two of the side 
walls to heating and cooling in different combjn~~tions. 
while keeping the bottom wall heated and the remain- 
ing two opposite side walls insulated. We present here 
the comparison of the numerical results with the 
experimental data for one of the cases. namely the 
case denoted as HHCC with heated bottom and left 
side wall and cooled top and right side wail. The 
heated walls were kept at 45 ‘C and the cooled ones at 
15 C so that the cavity configuration has a diagonal 
symmetry with reference bulk temperature of 30 C. 

As found earlier. the standard low Re number k--E 
model produced in a square cavity almost the same 
quality of agreement as the more complex algebraic 



Computation of turbulent natural convection 3621 

model, yielding only a slightly lower level of tur- 

bulence and consequently lower averaged Nu 
numbers. We discuss here the results for a square 
cavity with mixed boundary conditions, obtained by 
the simpler model and SGD hypothesis. 

The numerical grid with 80 x 80 CV was non- 
uniformly distributed and squeezed in the wall region 
so that at least I2 points fall between the wall and 
maximum velocity. and with the first grid point placed 
at J+ less than 0.5. Figure 17 show in sequence the 
velocity vector field (a), streamlines (b) as well as 
profiles of the turbulent Re number at several vertical 
cross-sections (c). The flow pattern agrees well with 
that recorded by flow visualization, As can be seen, 
the flow rotates in the clockwise direction with an 
intensive motion within the boundary layers along 
the walls. Gravitatio~~al force disturbs the diagonal 
symmetry generating thicker boundary layers at hori- 
zontal walls than on vertical ones. Intensive fluid cir- 
culation due to the differential heating of the vertical 
walls gcncrates an almost isothermal core and pre- 
vents the appearance of thermals which characterize 
the unstably stratifield field with bottom heating and 
top wall cooling. In the left corner the flow visu- 
alization indicated the appearance of small thermals, 
which cannot be predicted by the present method. but 
the overall agreement between the streamline patterns 
is satisfactory. These thermals arc carried away by the 
side wall boundary layer so that they rise against the 
pressure gradient into the upper left corner of the 
cavity without much exchange of heat with the sur- 
rounding fluid. Colder than fluid within the boundary 
layer, the thermals arc unable to penetrate fully into 
the stratified boundary layer on the upper wall ; they 
decelerate and form a vortex in the upper left zone of 
the cavity (denoted by the streamline H in Fig. 17(b)). 
For the Same reason a similar but cold vortex appears 
in the lower right region of the cavity. The velocity 
vector plot, Fig. 17(a), as well as velocity profiles (not 
presented here) show that the maximum velocities on 
the vertical walls appear very close to the walls while 
on the horizontal walls the maximum velocity is closer 
to the contact of the heated and cooled walls. As a 
consequence of such a flow pattern, the central region 
of the cavity is filled with the central vortex, which 
rotates in the counterclockwise direction. Fig. 17(b). 

The tcmperaturc profiles reflect in the whole the 
flow pattern described above, as shown in Figs. 18(a)- 
(c), except that the thermal wall boundary layers are 
considerably thinner. This is particularly pronounced 
on the vertical profiles of temperature at positions 
close to the vertical walls (not visible in Fig. 18). 
unfortunately, the experil~lental data of Kirkpatrick 
and Bohn do not yield possibilities for more detailed 
verification of the computed data. The only possibility 
for comparison is the temperature profile at the mid 
position which is presented in Fig. IS(c). As seen, 
both the computed and measured profiles show the 
same qualitative behavior. though the quantitative 
agreement is not fully satisfactory. The difference is 

VELOCITYVECTORS (a) 
- - O.XOE-001 H/s 

___ _ -- 
,r..- - -- 

. .‘.\\ 

It 

I. ,.. 

1, ,.- 

. 

\\\.. . -“I 

\._- - I. 

.--- - - - 

---- - - - 

-..--- - -- 

STREAM LINES 

0.0 0.2 0.4 0.6 0.8 p 1.0 

FE. 17. Velocity vectors, streamlines and profiles of tur- 
bulence Reynolds number in a square cavity with bottom 

and side heating-top and side cooling. 



3622 K. HANJALIC 

0.10 

YY T 
0.08 

0.06 

0.04 

002 

(b) 000 
0.0 0 2 0 4 0.6 0.8 T++ 

l.O- ih .” 

v/H HHCC rni" 

x/w=o.s I 
0.8- jl 

. 
l : 

0.6 n f.7 
% 
+ 
# I 

0.4- 0 
0 
0 
0 f . 

T-Tb,,,k (*cl 
FIG. IX. Normalized prolilea ol’mun temperatureat ditfcrent 
horizontal and vertical cross-sections in ;L squre cavity with 
bottom and side heating--top and side cooling. n Exper- 

iment (Kirkpatrick and Bohn [2]), 0 Computations. 

only about 0.5 C (note the expanded scale of T- r,,,,,, 
on abscissa), i.e. the experimental data show a total 
variation of core temperature with respect to r,,,,, 
within 0.5 C while the computed results yield a vari- 
ation within I .O C. Hence the experiments indicate a 
more intensive vertical mixing than predicted by the 
numerical model. Of course. the difference between 

and S. VASI~ 

the experiments and computations is so small that it 
could also be attributed to the imperfection of the 
experiment, i.e. three-dimensionality, wall radiation, 
non-uniformity of the wall temperatures, etc. The same 
cffccts could be blamed for a disagreement noticeable 
very close to the bottom wall. The measurements show 
here a higher subcooling of the fluid below the bulk 
temperature by I .2 C. while the maximum computed 
temperature ditrerencc is 0.8 C. The measurements 
could not be carried out very close to the wall where 
the fluid temperature steeply approaches the wail 
value of 15 C. Hence no detailed comparison of the 
computations was possible in the near-wall region. 

Kirkpatrick and Bohn proposed also the Nu-Rrr 
number correlations separately for each pair of walls. 
For the considered HHCC configuration they found 
that the cxperimcntal data for the top and bottom 
walls tit best the relationship NU = I.1 Ra" 'I', while 
for the vertical walls the proposed correlation is 
Nu = 0. I41 Ra" " '. In both correlations the Ru num- 
ber was based on the difference in temperatures of the 
warm and cold wall, Th - r,. while the Nu number 
was defined with the difference between the wall tem- 
perature and the bulk tcmperaturc r,,,,,,. The latter is 
defined as the arithmetic mean of the temperatures of 
all four walls. The authors concluded that the first 
correlation is not much affected by the imposed hori- 
zontal temperature difference. However, the second 
correlation yields higher values of Nu at the vertical 
walls if there is a bottom heating because the raising 
thermals are supposed to enhance the heat transfer 
also on the vertical walls. 

Our computations at Ra = 2. I5 x 10”‘Pdefined as 
above-yielded Nu numbers for horizontal walls of 254 
which is about 16”/, smaller than the value 302 
obtained from the above experimental correlation of 
Kirkpatrick and Bohn. Likewise, for the vertical 
walls the computed NU = 224 is smaller by 7% than 
the experimental value of 242. Although a possible 
lack of control of the experimental boundary con- 
ditions. inherent in the above experimental corre- 
lations. but not accounted for by the numerical com- 
putations. may be a source of discrepancy, the 
differences arc too large to be attributed to the imper- 
fection of the experiment. It stems more likely that 
the applied low Rc number liPi: model with SGD 
hypothesis is inadequate for predicting accurately the 
considered configuration. It is symptomatic that this 
model produced again lower values of Nussclt num- 
bcrs at both vertical and horizontal walls. as detected 
in the two cases discussed in previous Sections. 

The discrepancy is somcwherc in between those 
found for the square and tall cavity with side heating 
and cooling. Lower values of Nu numbers obviously 
rcilect a too low turbulence level predicted by the 
SGD model. It is expected that the algebraic model 
will bring the results in closer agreement with reality. 
Of course. none of the models can predict thermals 
nor any other large scale coherent motion. However, 
as mentioned before, the average effects including the 
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heat transfer on horizontal heated plate has been 
accounted for to a satisfactory level of agreement with 

experiments with the improved algebraic model of 

turbulence. A further study of this case would require 
more detailed experimental data for the model com- 
parison and verification than presently available. 

6. CONCLUSIONS 

In a search for an adequate model for the com- 
putation of complex buoyancy dominated turbulent 
flows with arbitrary boundary conditions a form of 
algebraic flux model was derived and its performance 
tested on the computation of several types of external 

and confined buoyancy-driven motion. Results for 
natural convection in rectangular enclosures with 
different aspect ratios and boundary conditions are 
discussed with parallel referencing to earlier reported 
computations of free convection on the walls heated 
from the side and from below. It was found that 
the low Re number k--E transport equations can be 
employed to describe the evolution of buoyancy 
affected turbulence and its scales, provided that the 
adequate formulation of the turbulent heat flux is 
used to represent the buoyant production. Since the 
mechanical production of turbulence is dominated by 
shear within the wall boundary layers, the results did 
not show much sensitivity to the formulation of tur- 
bulent stresses and, for the sake of simplicity, the 
standard eddy viscosity representation was retained 
withf;, and.f; functions of Launder and Sharma. 

The major conclusion concerns the modeling of 
the turbulent heat flux vector which was found to 
influence strongly the applicability of the model to a 
broader class of buoyant flows. Variants of gradient 
diffusion model with isotropic and non-isotropic eddy 
diffusivity and corresponding components of tem- 
perature gradients, were found to produce results of 
inconsistent quality. By contrast, the algebraic model 
of turbulent heat flux-derived by a straightforward 
truncation of the modeled differential transport equa- 
tion. with constant values assigned to the cocflicients 
@,, and C’i;--produced satisfactory results for all con- 
sidered cases. 

Specifically. it was found that in a square cavity 
with side heating and cooling, results obtained with 
different models arc reasonably close to each other. 
Differences appear in the case of tall cavities with 
the Same boundary conditions where the development 
length of the boundary layers along the vertical walls 
is more inflmntial. The same is the case for cavities, 
with simultaneous heating from sides and from the 
bottom. In both latter cases the effects of other terms, 
not accounted for by the eddy diffusivity models, 
which represent the interaction between the tur- 
bulent stresses and heat flux component with the mean 
temperature field and with mean rate of strain, are 
not negligible, in particular in the range of Ru number 
around and just after the laminar-to-turbulent 
transition. 

Reliable computations of specific features of buoy- 

ant flows will eventually require the application of a 
model at a second moment closure level. It is believed, 
however, that the described algebraic flux model 
(AFM) could serve for the computation of complex 
buoyancy driven flows in various geometries and with 
mixed boundary conditions-at least in the interim- 
until the uncertainties inherent in higher order models 
and difficulties in implementing these models into a 
general Navier-Stokes code are resolved. 
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